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L. INTRODUCTION
This was a broad multi-year effort aimed at the advancement of
modern optical sciences in several areas. This report summarizes solid

achievements in multiple areas.




In optical computing/pattern recognition, there were many highlights
and two Ph.D’s still in the pipeline. Their emphases are on moving away
from conventional Fourier processors to syntactic patter recognition (Fourier
and neural network based), 2D processing of 1D signals, and nonlinear
combining of results from multiple orthogonal filters.

In emergent, self-organizing effects, the primary emphases were on
hexagonal and channeling structures.

In lasers/laser materials, we made significant advances in two fields -
holographic probing of laser materials and powder lasers.

In very fundamental issues, three papers are of special interest. Théy
concern a fuzzy logic metaphysics of quantum mechanics, a derivation of the
Schrodinger and other equations based on fuzzy logic.

We realize that these topics are far too broad to cover coherently in a
single report. Accordingly, we have chosen to emphasize new areas of
research pioneered here especially in optical pattern recognition. As these
subsections are rather long, we treat each independently with its own
equation numbers references, etc.

Our accomplishments in the other areas will be identified clearly, and
references will be provided for those who care to know more.

II. Optical Pattern Recognition

Many pattern recognition intiatives were taken. The highlight was our

work on syntactic pattern recognition which we now summarize.

A novel syntactic approach is introduced to treat particular problems in




pattern recognition. The procedure is implemented by employing optical
correlation methods for identifying the various primitives appearing in the
input pattern and a fuzzy relational scoring is used to determine their
importance. Robust pattern recognition with tolerance to normal variations

was demonstrated, indicating an efficient new approach for optical pattern

recognition.




We address and illustrate here several approaches to optical syntactic
pattern recognition [1]. As syntactic pattern recognition is likely to be
unfamiliar to some readers, we begin by placing syntactic and the more
familiar statistical pattern recognition in context. Statistical methods are
usually applied to solve most pattern recognition problems [2]. On the other
hand, relatively little work has been done using the syntactic (or structural) |
approach to pattern recognition. This is especially true in optics. In statistical
pattern recognition, a set of characteristic “features” are extracted from
patterns and the assignment of each pattern to a pattern class is made by
partitioning the feature space [3]. This approach is ideally suited for simple
patterns that can be represented in vector forms, like alphanumeric
characters. This kind of recognition is purely quantitative without any
structural information. The basic idea of syntactic pattern recognition is to
recognize an object not directly, but by its description. Syntactic pattern
recognition includes statistical representation in addition to providing a
structural description of patterns-in terms and location of simpler sub-
patterns, or pattern primitives [4]. The pattern primitives are useful features
of the image that provide a rich description of the visual scene. This
approach can be applied to scene analysis where the patterns under
consideration are complex.

Fourier optical pattern recognition can be used to gather data required

to make a fuzzy comparison of a pattern with the description of an ideal

object. This approach is tolerant to scale change and distortion in the pattern




under consideration [1]. In this letter, we present a new and improved
scoring procedure for patterns than that described in [1]. In this method
automatic fuzzy relational information is generated and used. The score
obtained for each pattern is a number “N” which summarizes which features
are present to what certainty, and the spatial relations among them. “N” can
be viewed as a measure of the probability that the object is present, or a
decision can be made based on the number about the presence of the object.
Well-formed patterns will have higher numbers than ill-formed patterns.
Our scoring procedure is adaptive to the user's requirements with increased
tolerance to in-class variations, such as scale change and distortion.

A computer simulation demonstrates the effectiveness of our scoring method
by applying it to some examples drawn from optical character recognition,
around which most of the techniques used have been developed. One of the
characters used is the letter A. Consider the letter A as being comprised of
three primitives or sub-patterns, a vy and a ;as shown in Fig. 1. The scene
consisting of the letter A can be described as folloWs: There is an a;-like
feature above and to the right of an a,-like feature, as well as above and to the
left of an a,-like feature. And there is an a,-like feature below and to the left
bf an a,-like feature, as well as to the left of an a,-like feature. The line
through a, and a, is more or less horizontal. Similarly, there is an a,-like
feature below and to the right of an a;-like feature, as well as to the right of an
a,-like feature. This is a fuzzy description and the scoring procedure provides

quantitative evaluations of terms such as a;-like, and more or less.




Matched filters of the primitives were correlated Wiﬂ;l different input
characters, which were sets of computer generated and handprinted A’s, M’s,
and U’s. The letters AAMU stand for Alabama A&M University. The
handprinted characters were all roughly the same size. Ideally, correlation of
a perfect A with each of the researched primitives should be characterized by
one sharp peak in the image plane [1]. The maximum normalized peak
values ought to be ~1. This would not be the case for real A’s, where the
correlation peaks could be small.

For scoring each pattérn with respect to our description of A, the data
that are required are the normalized correlation peak heights S;(x,y) and
their location points (x;,y;). The scoring method involves setting up a
"fuzzy fan" about each correlation point (x;,y;) on the correlation surface a, of
the pattern. The fans are extended to encompass every other correlation
point (xj,yj), where i # j, as shown in Fig. 2. The points (xj,yj) on the
correlation surfaces of the primitives could lie anywhere between the fan
boundaries, or outside the fans specified, depending on the type of input
character. Since three primitives were chosen for the character A we have a
total of six fans, two from each correlation point.

We define m; as the fuzzy membership of the feature in the class of
primitive a, in the cone enclosed by fans drawn from the primitive

correlation point (x;,y;) on correlation surface 4,. For six fans we have six

fuzzy membership values my, 1,j=1, 2,3, where i #j. m; is a function of the




fan angle q, which is determined by the correlation point (x PYj)-
Mathematically we can express m; as:

Ii; =f(e)=f(xj’)’j‘xi>}’i)~ (1)
Physically, it is the significance of the location of feature j at (x;,y;) in view of
the assumed presence ;of the feature i at (x;,y;) in confirming the nature of
the object.

Using the correlation peak values and the fuzzy memberships, we

have tried four possible scoring methods which are:

N1=ZZMUSJ, 1?1‘] (2)
1)

NZZZHHUSJ, 1?‘5] (3)
I

N3=ZHHUSJ, 1¢] 4)
ji

N4 =ZHHUSIS]’ lij (5)
]

For this study i,j =1,2,3.

The fan angles were determined by scanning several handprinted A’s
and taking the average value of the angular variations of the different lines
that form the character. The fan angles chosen for this study are shown in
Table 1. For the fans drawn from the correlation point (x7,y;7) on correlation

surface a, to encompass the point (x,,y,) on correlation surface a,, the total

fan angle is 30°, with q, = 15° and q, = 15°. The fuzzy membership m,, of the

pattern in the primitive class a, is 1 along the bisector of the total angle, and




falls off to 0 linearly on either side. A similar set of angles and fuzzy
membership values are specified for m,,. For the fans drawn from the

correlation point (x,,y,) on correlation surface a, to encompass the point
(x3,y3) on correlation surface a,, q; = 10° above the horizontal axis, and q, =

5° below. The fuzzy membership m,, of the pattern in the primitive class a,

is 1 along the horizontal axis and falls off to 0 on either side. A similar set of
angles and fuzzy membership values are specified for m,, with q, = 5° above

the horizontal axis, and q, = 10° below. For the fans drawn from the points
(x7,y2) and (x3,y3), the fan angles and fuzzy membership values, m,; and
m,,, are the same as those specified for m;,and m,,.

Fig. 3 shows the correlations obtained with the A primitives for a set of
computer generated characters A, A, M, and U. The dark spots are the
correlation peaks, which have been auto-scaled separately for each character.
None of the fuzzy membership values of the two A’s were zero, as the
correlation peaks were found within the fans specified. All the fuzzy
membership values obtained for the computer generated character M were
zero. The correlations obtained of this character with the three A- primitives
violated our syntax description. Correlation peaks were obtained in a cluster
as seen in Fig. 3. The more intense peaks of the three primitive correlations
were found in the right branch cluster of the character. The correlation point

obtained with primitive 4, was located below and to the right of the




correlation point with primitive a,, and was on the same level as the a,
primitive correlation point. This does not fit our description of A.

For the computer generated U, correlation points obtained with
primitives 4, and a, were found in the left branch of the character, and were
very close to each other. Though fuzzy membership values were obtained for
m,,, and m,,, these were discarded taking into consideration the dimensions
of our A’s. The correlation point with primitive 2, was obtained in the right
branch within the fans specified, and more or less on the same level as the
correlation point with primitive a,, which gave fuzzy membership values
m,,, and m,.

The normalized scores obtained for some of the test characters are
shown in Table 2. The characters do not constitute a representative set but
they are illustrative examples on which our scoring method was tested and
proved. Good scores were obtained for the two computer generated A’s, A,
and A,. The primitives were formed from the character A, but a higher score
was obtained for A,, which gave a better correlation. For the handprinted A’s,
the scores were acceptable for A, and A,. Our method fails on the basis of
syntax, the specifications of which were stringent, for the character A,. The
method also failed to recognize the character A; on the basis of poor feature
recognition. None of the features fit our template well. The scores obtained
for all the M’s were zero except for one handprinted M, which is also shown
in Table 2. The primitive correlations which were obtained in the left branch

of the character, did not violate our syntax description. Scores were obtained




for the character as two of its correlation points, corresponding to correlation
surfaces a, and a,, were found to lie within the fan boundaries drawn from
correlation point on surface 2,. On comparison with the A scores it can be
seen that the scores are not as high as those obtained for the good A’s. The
scores obtained for all the U’s except the computer generated one, were zero.
From the table, it can be concluded that for patterns having some features iﬁ
common with A, like the M, the scoring method “N,” works best as it uses
multiplicative features which are high only if all features are present and
well-formed.

In summary, we have designed and implemented a new and improved
scoring procedure for pattern recognition using the syntactic approach, which
is successful in eliminating patterns that do not belong to the class under
consideration. Our method can be used to recognize multiple objects in the
scene that are non-overlapping.

This work was sponsored by the U. S. Army MICOM under contract no.
DAAH01-93-C-R351 , and the U. S. Department of Energy under contract no.

DEFGO05-94ER25229.
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Figure Captions:
Fig. 1. Character A and pattern primitives a,, a,, and 4.
Fig. 2. Fans drawn from correlation point (x;,y;) on correlation surface

a; to encompass correlation point (x;,y;) on correlation surface

a,. The circles represent the primitive correlation surfaces.

Fig. 3. Correlations obtained for a set of computer generated characters
A, A, M, and U, with pattern primitives a,, a,, and a,, which
were derived from the top left character A shown in Figure. The

dark spots are the correlation peaks.
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Table 1. Fan angles for fans drawn from each

correlation  point  for

membership values.

determining

fuzzy

Fans Drawn

Fan Angles (degrees)

From To
(correlation | (correlation 0, 0,
surface) surface)

a, a, 15 15
a, a, 15 15
a, a, 15 15
a, a, 10 5
a, a, 15 15
a, a, 5 10
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Table 2.

Normalized scores obtained for some

test characters.

Al A2 A3 A4 A5 A6
Normalized | (computer | (computer | (Hand | (Hand | (Hand (Han
Scores | gonerated) | generated) | printed) | printed) | printed) | printe
N, 1 1.6 0.96 67 0.009 .36

N, 1 248 1.009 46 0 0

N, 1 2.42 1.21 76 0 0

N, 1 2.57 0.77 29 0 0
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BSTRACT

Collective selforganization effects and chaos are commonly observed in
optics. We describe examples in a particular kind of nonlinear optical material:
photrefractive crystals. In particular, we show different effects which arise when
photorefractive crystals are illuminated by on laser beam, two laser beams, and three

laser beams.
Key words: Photorefractives, Selforganization, Hexagonal Patterns, Laser, Phase

Conjugation




L INTRODUCTION

~Classical optics is linear. It is complex technically. We are still learning how
to characterize coherence, polarization, imaging, etc. “Complexity” as
mathematicians use that term has become important as we introduce materials
which interact non linearly with the incident light into optical systems and use
optical systems which introduce feedback or other coupling. Inevitably, however,
non linearity and coupling open the door to the two seemingly-opposed
manifestations of complexity: the emergence of order and the emergence of chaos.
Indeed there is an order to chaos so that apparent contradiction is illusory.

We welcome the selforganization of this journal as a forum wherein workers
from many fields can interact in a nonlinear manner in the hope of giving birth to
emergent order or chaos. Toward that end, we offer this invitation-to..dialog.

Complexity is ubiquitous in modern optics. Wé offer here not a survey but a
sampling. There is much more than we show here, but what we show here is
enough to paint an accurate abstract picture of complexity in one field of optics

called nonlinear optics.

18 NONLINEAR OPTICS AND LASERS: THE EDGE OF CHAOS

For most practical purposes, light does not interact with light. Even what we
call “interference” is best thought of as the linear superposition of multiple

independent electromagnetic fields. The description of these “simple” effects is




coherence theory. Great scientists have spent distinguished careers in this field and

much remains to be done.

Indeed much of both current and historic optics is linear. This includes
interferometry, optical instrumentation(microscopes, telescopes), etc. Even more
modern applications such as information, communication, and storage is. mostly
linear. We use “square law” detection or recording, but seldom exploit this
nonlinearity creatively. The primary exception is heterodyne detection.

What is usually meant by nonlinear optics is the use of a material whose
interaction with other light (from the same or a different source) through its index
of refraction or absorptioh varies in some polynomial fashion with the electric field
of the light* Many of the effects achievable with nonlinear optics are not what
readers of this journal mean by "complexity.” They include light frequency
doubling, modulation of one beam by another, and a borderline case: optical
bistability. |

In optical bistability, the transmission or reﬂectior; of some device or material
is governed by the irradiance (power per unit area) of the incident beam. Below a
threshold, the transmission is low. Above threshold, it is high. Hysteresis is
normally present. The usual conditions of nonlinearity and feedback create this
phenomenon which is replete with the usual stigmata of complex, self-organized
transitions: critical slowing down and critical fluctuations.

The key to much modern optics is the laser. It uses nonlinear spectroscopic
“Light can be viewed as an electric and magnetic field pattern satisfying the wave equation. We usually shorten this to say

that light is an electromagnetic wave




effects and feedback (from the system construction) to create an emergent,

”

“synergetic,” “coherent” output.

- Thus both nonlinear optics and lasers put optics at “the edge of chaos.” Here
we will show some other examples of nonlinear optics at and over that edge. We
will move from one-beam to two-beam to three beam configurations.

O  SINGLE BEAM SELF ORGANIZING PHENOMENA IN NONLINEAR

OPTICS

Perhaps the most characteristic complex phenomena are the new
organizations that emerge as systems are operated far from equilibrium. The
phenomena has been perhaps most effectively celebrated (albeit from different
perspectives) by Prigogine (1) and by Haken (2). The latter has given this field a
name, “synergetics,” that he and his many fggpwers use.

When a single beam of laser hghtgls incident on a crystal of some
photrefractive crystals more-or-less on axis, the crystai undergoes self organizing
behavior dependent on the beam irradiance. Within the range of irradiances we
were willing to risk (These crystals sometimes scatter at high irradiance values),

there is the sequence of states we can observe beginning with the lowest irradiances:

. transparency (no diffraction),
. circular pattern (leading to a cone of diffracted light),
e  hexagonal patterns as shown in Fig. 1(leading to hexagonal dot array

diffracted light, and
. rotating hexagons (leading to a rotating hexagonal dot array of diffracted
light).

All of these transitions exhibit the three universal features of self organized

state changes:




. thresholds in the control parameter,

critical slowing down, and
. critical fluctuation.

Thus {here is little doubt that this is a textbook case of selforganization.

We will offer a limited theory of how this happens below. The purpose is to |
illustrate the proposition that selforganization is not mysterious even though we
are sometimes too dull to anticipate it before we observe it.

The theory has to do with mixing of off-crystal-axis scattering from the faces
of the crystal with Fabry-Perot enhances on-crystal-axis scattering. At far enough off-
axis beam incidence, the on-axis effect dies away and hexagons do not appear. Self
organization does appear, however. The crystal structure and its diffracted light
pattern fall into space-time chaos. no steady state arises.

The basic experiment involves shining a laser beam on a KNbO; crystal (not
just any KNbO, crystal and not just any angle, but maystals cut and illuminated
within a reasonableémall range of near normal aﬂgles). The control parameter is
beam irradiance H. Or, since the area is constant, the laser power. At low power,
the beam shines right trough the crystal as through it were a clear piece of glass.
After a threshold irradiance is passed, the light passing through the crystal suddenly
diffracts into a conical pattern. Soon thereafter, as H is increased, it diffracts the light
into a hexagonal pattern - Fig. 1(a). If we look back into the crystal itself, we also see
hexaéons - Fig. 1(b). Opticists know that the diffraction pattern is the Fourier
transform of the scattered pattern, so Fig. 1 (b) is what we would expect give Fig. 1 (a)
and conversely. At even higher irradiances the hexagons begin to rotate. Are there
“higher" states still, perhaps chaotic? Probably, but we are reluctant to.look. These

crystals are expensive and tend to crack with too much irradiance.




It is easy to give a simple explanation for this attractive phenomenon. Like
most simple explanations it is almost certainly in need of detailed modifications.
Yet it gives a nice “feel” for what is happening. One of the possible explanation is
Raleigh-Benard selforganization that occurs as a fluid tries to configure itself
optimally to dissipate more and more heat. Patterns of material and heat flow
between front and back surfaces become the most efficient approach at high enough
pumping irradiances, when surface forces dominate the price paid to organize , the
favored shape is a hexagonal. Indeed such hexagons occur not only in this case and
in Rayleigh-Bernard cases but also in many other situations. This illustrates
something we have observed in complex phenomena for which there either is no
name or the name is unknown to us:

There are universal behavior patterns in complex phenomena which are
domain independent, and hexagonal pattern formation is one case. Feigenbaum's

universal description of the bifurcation path to chaos is another.

IV.  ANALYSIS OF THE SELFORGANIZATION OF HEXAGONAL PATTERNS

The single incident beam is broken into multiple beams inside the crystal.
We will consider a general enough scheme of 6-wave interaction in a
photorefractive crystal. To be specific, we describe first transformation and self-
organization of scattering from a one beam setup. In Fig. 2, the incident wave Cj is
reflected from the crystal surface, producing wave C1. Due to scattering, additional
waves appear, from which the crystals select waves C3,4 propagating along normal

to the crystal surfaces(Fabry-Perot modes). Interaction of these 4-waves produce '




holographic gratings and additional waves C5 (counter-propagating to C2) and Cg
(counter propagating to input C1 wave, being phase-conjugate replica of Cy). |
This type of one-beam initiated 6-wave phase-conjugation was first observed in
photorefractive SBN crystal [3], and explained as self- organization of scattering due
to recording of transmission gratings. In this paper we show, that reflection gratings
alone can also lead for self-organization of scattering, which is the case of KNbO3
crystals [4].
For better understanding of holographic wave coupling in selforganization, it is
helpful to introduce scattering diagrams. These lead to the proper terms in coupled-
wave equations [5]. For example, for the Fabry-Perot mode wave C3 (the left hand
side) yield scattering diagram 1. Wave vectors indicate scattering waves, solid vector
designate recording waves, and parallel lines show the orientation of holographic
gratings planes. The first three-scattering diagrams on the right-hand side describe
self diffraction when the same waves participate in grating recording and diffraction.
The last two diagrams describe parametric diffraction ;vhen two waves make the
hologram, and diffraction of the third wave results in the scattered wave C3.
Interplay between selfdiffraction and parametric scattering results in the complex
dynamic of wave interaction leading to pattern formation. As an example, for the
photorefractive crystal KNbO3, the main recording mechanism is a nonlocal
“diffusion” response that results in energy exchange by self diffraction and
diffraction intensity and phase changes.

In that model, pattern formation may be described also as an interaction

between different modes of a nonlinear Fabry-Perot resonator.




These modes are coupled via selfdiffraction and diffraction leading to the
observed phenomenon of pattern interchanges and rotation. Another practically

important scheme, described by a six wave-mixing model, is the hexagonal

configuration, in which one beam is along the normal to the surface (wave C4 in
Fig. 2), and another beam is the C1 wave. In this case strong waves C5and phase-
conjugate waves Cg appear in addition to the hexagon formation in the C3 and C4

waves. This scheme also allows us to perform edge enhancement of an image, when

the input field Cj is the Fourier transform of an object, provided the object is

slightly displaced from the focal plane of the fourier transform lens. For a better

introduction of different contributions to the C5 wave, consider scattering diagram

(Fig. 4).
For the case when C4 is a plane wave and an image is introduced in the C1

wave, the dominant scattering diagram will be 4th, describing parametric diffraction.
This diagram shows that C5 wave is phase-conjugate to C2, and because C2 is simply
a reflected copy of the signal wave Cj. So, in this case: we have simultaneously 2
phase-conjugated waves, one is a reflected Cg and another is C5 - a forward

propagation wave.

Another special case, normal incidence of the pump wave Cj], is also

described by this 6-wave scattering model. For the plane-wave approximation,
hexagon formation can be described by the 3 sets of 6-wave interacts (Fig. 2), where
side waves C1,2 5 6 are the hexagon spots. In this “holographic” language, the set of
holographic gratings, described by the scattering diagrams 1 and 2, are responsible for

formation of near-field hexagonal pattern (Fig. 5).




Another, equivalent language of pattern formation in photorefractive crystal
described the abové-mentioned 6-wave scheme as interaction of Fabry-Perot.
resonator’s modes. In both languages, holographic and resonator’s coupled modes
may be used for description of the spatial-temporal pattern formation and the choice
of model depends on convenience and the background of interested researches.

Finally we will describe a simple variation of the experimental procedure
described above to achieve broadcasting of an input object into more than one
location in space. Traditionally, the decomposition of the optical beams into several
directions can be achieved using gratings, or diffractive optics in the general case. To
achieve image broadcasting, we reduce the angle between the two participating
optical fields C4 and C1 in our case to zero. Furthermore, we first expose the crystal
to the pump beam C4 for a few second to set up the transmission and reflection
gratings which are responsible for directing the pump into a hexagonal pattern in
the far field. Thereafter, with the pump switched off, the crystal is illuminated with
C4, which is Fourier transform of the object. -

The far-field pattern is shown in Fig. 6 and shows the broadcasting of the
letter “T” to the locations of the hexagonal pattern. It is also possible to change the
orientation of the pattern by e#posing the crystal to the pump beam sufficiently long
and so that the pump makes a small angle (approximately 0.04 degrees) with the
normal to the incident surface of the crystal. The prolonged exposure reorients the
far hexagonal pattern. Reillumination of the induced gratings created by the pump
with the Fourier transform of the object broadcasts the images at this new

orientation.
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Besides “central” broadcasting to all the six locations of the hexagon, we
expect that local broadcasting is also possible by redirecting the image into one of the
peripheral spots. In this case, only three nearest neighbor spots will be
communicated with, leaving another three spots free for another independent
message.

V.TWO WAVE SELFORGANIZATION

When we go to two beams incident on a photorefractive* crystal, new
complex phenomena emerge. One of our favorite of these is the Double Phase
Conjguate Mirror or DPCM. Initial “noise holograms” formed by two independent,
mutually-incoherent beams interact in the crystal to form a new hologram — one
which causes each beam to retrace the path of the other. For obvious reasons, we

sometimes refer to this effect as “light calling” [6,7 ].

VI. THREE BEAM SELFORGANIZATION

As interesting as the DPCM is, it only sets the stz;ge for what happens when
we add a third beam. As readers of this journal know well, three is a magic number
in complexity. Three coupled nonlinear variables introduce the possibility of chaos.
In this case, we see not only chaos, but also a beautiful and unusual path to chaos.
We call this phenomenon a TPCM or a Triple Phase Conjugate Mirror.

Figure 7 shows a DPCM setup. To build a TPCM, we added a third beam on one side
as shown in Figure 8. We then monitored the combined beam produced when both
of the mutually coherent beams on one side were called into a single beam on the

other. We used a chopper in conjuction with a mode locked amplifier to distinguish
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point in time to destructively subtract, is not fully understood. We do know that for
a photorefractive volume hologram the induced Bragg grating will readjust given
the light intensity distribution. A DPCM, with two input beams, reaches a stable
solution after some period of time. The TPCM, however, does not have such a
point, but goes into an orbit about such a point.
The distressing thing about chaos is that it is not repeatable. No two runs of this
experiment can be overlaid. The run we show in Figure 9 is as close to a “typical”
time series as there ever was. For comparison, we show in Figure 10 what happens
when one of the beams is blocked, giving an ordinary DPCM. Again there is a
simple, largely-correct explanation. The TPCM couples two mutually-coherent
beams into one output. When the two beams are in phase, the combined beam is
bright. Of course, when they are out of phase, it is dark. The most interesting thing is
that the conjugated beam loses its way of falls into a chaotic attractor, see Figure 11.
The dimension of this attrator has been calculated to be between 0.7 and 0.8. The
physical mechanism that causes the two beams to constrt.lctively add and at a later
VI

VII. _CONCLUSION

Self orgam’zafion in photorefractives is ubiquitous. and almost
inevitable. Our task is to make creative use of it, DPCM is obviously
useful. But what about phenomena like hexagon formation? If our task is our task
is to form hexagon, this is a wonderful way to do it. Generalizing from that leads to
the systematic consideration of "synergetic manufacturing” which we explore

elsewhere (8).
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(a) (b)

Fig. 1. Far-field transmission pattern showing central spot and hexagonal
spot array(left), near-field pattern showing hundreds of spots arranged

in hexagonal arrays(right).




Fig.2 Scheme of 6-wave mixing generated by a single
laser beam C1 (solid line vector). with reflected beam
C2 and scattering wave C3=Cs
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Fig.5. Holographic scheme of hexadon formation
discribed by interaction of 14 plane waves.




Figure 6 J“’ Letter "T" broadcasted to the locations of the
hexagonal pattem.
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Figure 11. 3-D embeding of Figure 10.
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Abstract

A continuous extension is an operator which replaces an
integer value used as input, output, and/or parameter of another
operator with a real number in such a way that when the real
number is specialized to integer values, the two operators are
identical.




I._Introduction and Background

The purpose of this communication is to place a number of
issues of importance to optics such as fuzzy logic, fractals, fractional
Fourier transforms, fractional calculus, filtering and partial
coherence, into a simple unified framework. We call that framework
“continuous extensions.” In the following, we will define and
illustrate three distinct forms of continuous extensions and note
some combinations. These definitions are mathematical. We follow
that with brief discussion of optical continuous extensions.

Boolean logic has been widely used in the recent decades as
main means of transmission and processing of information. Various
devices as computers were constructed to work with this logic
format. Recently, it has been discovered that fuzzy logic may be a
useful tool for control and other applications. In this approach the
truth of a signal of a signals are not only 1 (yes) or 0 (no) but also
anywhere in the zone between 0 and 1. A simple optical
implementation was also obtained [1]. This fuzzy logic approach is
an example for a continuous extensions of the Boolean logic.

Likewise, a continuous extension occurred in the field of
dimensionality. The definition of the conventional dimensions (a
point is one dimensional, a line is two dimensional, and a volume is
three dimensional) was extended to shapes that have items repeated
periodically while their sizes are being monotonously decreased
(coined “fractals”) [2,3]. Thus, instead of integer numbers, the
dimensions now accept meaning also for real values, e.g. 2.23, when
fractals are concerned.

The Fourier transform (FT) is an important tool for analyze
systems and processing signals. Recently, a continuous extensions of
this transform was suggested and coined the “fractional Fourier
transform” (FRT) [4]-[7]. This transformation was also implemented
optically. The FRT order may accept now any real value. When the
order equals to 1 them the FRT becomes the FT. Note the FT is space
invariant ( the FT of a shifted objected equals to the FT of the
reference object multiplied by a linear phase factor) the FRT is
partially space invariant [8,9]. The amount of the space invariance




depends upon the fractional order (when the order is 1 the FRT is
space invariant, when the order is zero the FRT is space variant).

Another important continuous extension that is related to the
FRT, is the extension of the calculus into fractional calculus where a
fractional derivation and integral are defined [10]. Using the
property F{—d%} = —jwF(w)(where F is the FT operator and F(w) is
X
the FT of f(x), the fractional p derivation of F (w) was defined as (-
jw)p F(w).

Now, consider a continuous extensions example that is
connected with a Fourier plane filtering. In the Fourier plane, one
may write the filter function as

_F*x)
mw—W“P (1)

where F(x) is the FT of the reference object. Different possible -
values of n may be chosen for different optimizing different criteria
[11}-[13]. For n=o the filter obtained is the matched filter and it
performs an optimization according to the signal-to-noise criterion.
When=1 the filter obtained is the phase only matched filter and it
optimizes the output plane according to the efficiency criterion (14).
For n=2, the filter is an inverse filter and it optimizes the output
plane according to correlation peak sharpness. The continuous
extension of this case is to replace n with any real value.

In the early days of optics, illumination was considered to be
coherent or incoherent. That is the coherence is 1 or zero. This is for
both space and time domains. The continuous extension of those
illumination types is the partially coherent illumination [15]. The
degree of the coherency may be important for different applications
(for instance in pattern recognition systems it is preferable if the
output is spatially incoherent since then the speckle effect, which is
typical for coherent light, does not exist-see Ref. [15}).

II. Continuous Extensions On Arguments

Suppose we have an operator Q (n) which operates only on
integers (some or all of them). An operator O, (x)is a continuous




extension on the argument of O @®® if the allowable arguments of
c are real, including the integer {n} and that

O, (x=1) =0 (N) (2)

For example, the Gamma function T (x)is a continuous
extension on the argument of the factorial function

n!=n(n-Hn-2)..(2) 3)
That is real x’s are accepted by I'(x)and
['(x=n)=n! 4)

III. Continuous Extensions on the Operator Parameter

Suppose we have an operator 0”(x)which may operate on
reals, integers, complex numbers. The operator is parametrized by
an integer parameter p. Then an operator 0¥ (x) is a continuous
extension on the parameter p if 0 (x) is defined for real y which
includes the allowable integer set {p} and

Ou = p(x) =0® (x) (5)
Immediately after inventing the differentiation operator

d(u)
e )

D® [[ (x)] =

Newton and Leibnitz independently invented fractional calculus [10].

Note that
) Do[fx)] =1 x) 7)

D[] = [ (x) dx

Bracewell showed [16] the important of this extension for signal
processing applications.




IV. Continuous Extension on Outputs

Suppose one has an operator that transforms
x or orf (x) ton:

N O(x)=N (8)

That is, for all x O (x) is an integer. We call P(x) a continuous extension
on the out put if

P(x)=y ©)
where y is a continuous set of real numbers including the allowable
integers {n} and

P(x) =0 (x) (10)
when y=n. The obvious example is the dimension operator. This
operator gives

O(point) = O (11)

O (line) =1

O (area) =2

O (volume) =3

A continuous extension on the output for this case is the fractal

dimension operator [2, 3].

V. Mixed continuous Extensions

Continuous extensions are possible on arguments, parameters
and outputs. Either possible combination of digital/discrete choices is
available in principle. Sometimes they are coupled. Since n!is an
integer itself it is not surprising that r (x) is a continuous extension on
the argument and on the output. We could define a continuous
extension on the argument of n! which retains an integer output. Let
m=[x], where m is the highest integer such that x>m. Then ([x])!=m!is a
continuous extension on the argument but not on the output.




V1. Conclusion

Table 1 summarizes some continuous extensions of interest in
the optic field. This is a representative not an exhaustive list. Since
a continuous extension cannot be less useful than the integer
opérator it contains, it is always worth investigating. In this
communication we showed that each integer function can have
several continuous extensions. The only example we provided was -
for n!, but there are also many others including fuzzy logic, many
versions of fractional calculus, etc. Sometimes continuous
extensions couples. We have shown recently, for example. that
fractional Fourier transforms can implement several forms of
partially space invariant correlation [17,18]. In this extension the
fractal order varies and it is no longer uniform and discrete for the
entire input plane. Using the concept and the mathematical analysis
of the continuous extension, new optical system/operation may be
invented quite deliberately. Each integer we encounter should be a
challenge.
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OI.  Locating Feature Primitives

Following an off—line selection process to pick the feature primitives,
the location of the features is done optically. One of the several available
methods can be used to design accommodating filters for each primitive in
the Fourier plane. The auto-correlation of the derivatives of the researched
primitive is characterized in the image plane by a sharp peak. A threshold
value SQ can be assigned to the normalized output signal S(x,y). The the
output signal is given by: |
With this condition, there will be either no peak or one peak will be obtained
if we are dealing with single input objects. The data are the peaks and their
centroids.
Syntactic pattern recognition can be used successfully to solve pattern
recognition problems. We have used the syntactic approach to address a
particular problem in pattern recognition. A new fuzzy relational scoring
procedure for syntactic pattern recognition is illustrated which allows for
robust recognition with tolerance to normal variations. This method is an
application of conventional statistical methods of space invariant optical

pattern recognition of features to syntactic pattern recognition of objects.




2.3 PARTIALLY SPACE VARIANT FILTERING
It is not strictly necessary that we break the two Fourier transform

semiedempotent system into two equal parts. We can break it into unequal

parts. One may do a fraction B of the task and the other may do the

remaining 1-f fraction of the task. This attractive for two reason. First, we

have the capability now to treat such systems analytically with “fractional
fourier transforms.” Second, this offers the potentially useful capability of

partial space variance.




n.  COMPLEXITY
(See attached paper - “One-, two-, and three-beam optical complexity effects
inphotrefractive materials (from Chaos to Logos)
IV. NONLINEAR OPTICS

Among the highlights in this field are three papers on channeling in
photorefractives (13). This is a new diffraction condition (neither Ram-Nath
nor Bragg) which is somewhat related to Talbot and Lau effects as well as to
GRIN optics and may have some practical applications in focal plane arrays.
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V.  LASERS/LASER MATERIALS

We have made significant advances in two areas: holographic probing
of the properties of laser materials and powder lasers ( ). The latter may
make solid state lasers cheap and rugged.
References
VI. FUNDAMENTALS

Two papers on fuzzy quantum mechanics (1,2) and one on quantum
GA (3) were published. The former mark a new metaphysics many already
find more satisfying than the mystery of complementary, the absurdity of
many universes, etc. Along with recent work by Frieden and Soffer (4), they

constitute the only derivations of the Schroedinger equation known to us.




The relationship between those two is being studied. This work is of great
fundamental importances so Paper 2 is attached as an appendix.
References

1. H. John Caulfield, A. Granik and Luis Lopez, “A fuzzy logic

metaphysics for quantum mechanics, Speculations in Science and

Technology 18, 61-67 (1995).
2. H. John Caulfield, A. Granik, “A quantum Mechanical Resolution of
Multiple Metaphysical Paradoxes,”
3. B.R. Frieden and B.H. Soffer, “Lagrangans of physics and ’ghe game of
Fisher - information transfer, “ Phys. Rev. E 52, 2274-2286 (1995).
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contributions. At the same time we turned out three black Ph.D. opticists and
proved that good scientists like
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Discrete Case Continuous Extension Extended Quantity | References
Boolean Logic Fuzzy Logic Argument and Output | 1
Dimensions Fractal Dimensions Output 23
Fourier Transform | Fractional Fourier Transform | Parameter 4-7
Space Variance Partial Space Variance Parameter 8.9
{(or invariance) (or invariance)

Calculus Fractional Calculus Parameter 10
Fciurier Plane Filter | Generalized Version Parameter 11-13
é—}i} n # integer

n=0 (matched)

n=1 (phase only)

n=2 (inverse)

Coherency Partial Coherence . Parameter 15

Table 1: Important continuous extensions.
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ABSTRACT

We outline a series of metaphysical problems and paradoxes (being, life, mind,
motion, locality and truth) which all have the same form. This fact allows us to reduce
them to one seemingly simple problem of a transition from a “poor" reality to a "rich "
reality. We made this reduction on the basis of fuzzy-logical metaphysics of quantum
mechanics (Granik & Caulfield, Refs. 1,2). As a result we show that none of the
metaphysical paradoxes is paradoxical if they are viewed from the point of view of the
fuzzy-logical metaphysics.
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1. INTRODUCTION

Physics and metaphysics are not separated by a sharp impenetrable boundary. On
the contrary, one may say that the boundary (if it exists at all) 1s rather diffuse. Those who
are trying to formulate a new physical theory, or pondering the epistemology or ontology
of the existing theories, inevitably find ( to a dismay of some, and to a satisfaction of the
others) that they trespass the boundary between physics and metaphysics, and venture to
the other Side. This is true for both pure philosophers of science (for example,
Rauschenbach), and for pure physicists (Newton, Einstein, Bohr, Schroedinger,
Heisenberg, and many others). We can safely say that not a single new theory in physics
was not preceded by some metaphysical considerations. Inversely, any metaphysical study
requires a serious study of a physical theory.

This explains how we, physicists, found ourselves in the domain of readers and
contributors of this journal - metaphysics. We are not going to claim that In our everyday
practice we encounter serious metaphysical problems. However our recent work on an
interpretation of quantum mechanics inevitably leads us to the domain of metaphysics.
Here we began to ponder about some related problems, which eventually lead us to an
effort to propose our solutions to some metaphysical paradoxes. We are sure that our
solutions will not be met with a universal approval. Exactly this thought compels us to
present them to the judgment of people who spend their careers in solving these problems.

As we found in our work on a new interpretation of quantum mechanics, the above
problems can be restated and reassessed from a point of view dictated by our
interpretation. As we have already indicated, the boundary separating physics and
metaphysics is rather fuzzy. Therefore our venture into the territory of metaphysics is
inevitable since an interpretation of quantum mechanics necessarily leads one into
metaphysical considerations. Thus this paper invites comments from the other side of the
boundary hoping that they will enrich both.

II. PROBLEMS IN METAPHYSICS

In what follows we address some of the oldest and trickiest problems in
metaphysics. The problems themselves are well known probably from the time
immemorial. What may be new is how we formulate them by bringing forward their
similarity which cannot be regarded as mere coincidence

Being. - The problem associated with this concept is: How can being arise from nothing?
This seerns a major mystery. We hope to show that by resolving it we resolve all the other
problems. We call this problem the Aristotle problem. The justification of the name lies in
our reading of his proof of God's existence: There is no rational way to account for
existence - therefore God exists.




Life. How can life arise from a non-living matter? We call this the Ezekiel's problem
based on a famous quotation, "Can these bones live?" It is almost self-evident that this
problem is similar to Aristotle problem.

Motion. How can motion arise from distinct, non-moving events, each occurring at a
given instant of time? This is a well-known Zeno paradox that was quasi-solved by -
introducing calculus of infinitesimals. However this latter has its own metaphysical
paradoxes.

Truth. How can truth arise from mere facts? In brief, what is the difference between truth
and fact? While stories and parables almost universally convey the truth (or at least what
is perceived as truth by their authors) science conveys only reproducible facts. It is not
coincidental that religion and philosophy rest on truths not facts. Therefore honoring a
famous teller of parables ( or universal truths 7). We call this problem the Jesus problem:
"What 1s truth?"

Non-locality. How can a measurement made at one point in space-time affect a second
measurement at a space-time point so separated from the first one that any physical
communications between two points is forbidden by relativity? This is a famous EPR
paradox which in the opinion of its authors proved that quantum mechanics is flawed. In
honor of the E of EPR (the most implacable critic of the current interpretation of quantum
mechanics) we call this the Einstein problem.

Thus list could and most probably should be considerably extended. Our task is to
reformulate the problems on the list. There emerges a common pattern in all these
problems. There exist two kinds of reality "P" and "R "

(P) Is the reality that we provisionally call "poorer" and assume to be prior ( both logically
and temporally ) to a reality which we provisionally call richer (R) . This means that here
"poor" and rich" should be understood only in the context of a human perception. For
example, "poor" nothing and "rich" being in the being problem means that nothing is
viewed as a "poor" source which presumably cannot generate a "rich" variety of "things".

(R) is a seemingly "richer" reality which needs no ontological support from the prior
"poorer" reality.

Thus all the above problems (or paradoxes) can be reduced to the following formal
proposition:
P - R )

{
That is the logically prior "poor" reality P (i.e., non-being in the being problem) gives rise
to the "rich" reality R. This violates common sense. In all other cases P = R. Reading
this equation from right to left produces what we ordinarily call a miracle. That living
things (R) give rise to dead things is not surprising. The opposite is.
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Implication (1) now requires an explanation of how one can account for the
transition P = R. Using this implication as a common feature of all the problems listed
above we represent them in a table form - Table 1. As a justification for a such seemingly
simple reduction of extremely complicated problems we rely on a well-known adage that a
correct formulation of the problem constitutes half of its solution. Therefore we hope that
our reduction given by relation (1) moves us along this path

TABLE 1

The P = R Problem: How Does P Give Rise to P?

Name of a  Associated Poorer, but Logically Richer, but Ontologically
Problem Person Prior Reality Derivative Reality

Being Aristotle Nothing Everything

Life Ezekiel Matter Life

Mind Descartes Brain Mind

Motion Zeno Instants Motion

Truth Jesus Facts, Observables Deeper Truth

Locality Einstein Local, ”Causal "Effects Nonlocal, “Acausal” Effects

II. A FUZZY METAPHYSICS OF QUANTUM MECHANICS.

At the present, quantum mechanics is considered as one of the most profound
physical theories. Its master equation, the Schroedinger equation, was preceded by some
metaphysical considerations rooted in experimental results. In fact, in one of his 6 famous
papers on quantum mechanics E.Schroedinger (Schroedinger,1978, 27) wrote about the
wave equation that “ It is not even decided that it must definitely of the second order.
Only striving for simplicity ( emphasis is ours) leads us to try this to begin with”. One
can see that a clearly stated metaphysical goal of simplicity superseded any other possible
physical considerations. The same approach was also characteristic for another founder of
quantum mechanics, Dirac who judged emerging theories by their mathematical beauty.

On the other hand, any new physical theory required a refinement of initial, sometimes
rudimentary metaphysics, which lead to its formulation. This pattern is especially
pronounced in the development of quantum mechanics where the arguments about its
interpretation and the respective metaphysics started from the first steps of the new theory
and are continuing to this day (see, for example an interesting book by Stapp, 1993)

Our previous work on a connection of the fuzzy logic and quantum mechanics
(Granik & Caulfiled, Refs. 1,2)
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followed the same pattern as was described in the preceding paragraphs. At the beginning
we adopted a metaphysical notion that a perceptible world ( that is accessible to our
senses, understood broadly as including sophisticated detecting devices ) is a result of
defuzzification of the "thing in itself" understood as a fuzzy wholeness. In this context the
defuzzification means an interaction of the parts of the wholeness that generates averaged
quantities whose detection- registration presents itself as the perceptible world. This -
allowed us to connect the quantum-mechanical measurement with the defuzzification
procedure of the all-embracing wholeness - "thing in itself". Humans are a part of this
process, and as such represent a result of defuzzification of this wholeness

Thus, in brief we introduced a metaphysics which posits the following
propositions:

o There is a hidden all-embracing reality representing a fuzzy wholeness, where for
example, there are no physical entities possessing sharply defined existence at a point in
space-time. In other words, by using a concept of membership density (defined by these
authors for the first time,Granik and Caulfield, Ref 2), we state that physical things,
generally speaking, have a membership density which is not delta-function like.

0 Measurement is defuzzification. In other words, an interaction of different parts
of the fuzzy wholeness (charged with endless possibilities ) results in creation of a crisp
reality - physical objects having sharply defined membership density, and capable of
communicating with each other by virtue of signals whose velocity at the level of crisp
reality cannot exceed a certain limiting value - the speed of light. Inevitably, the
defuzzification process is accompanied by a loss of information about the fuzzy wholeness.
In a sense, we are bound to know only a part of the truth about the fuzzy thing in itself -
the part which emerges as a result of defuzzification Note that chances of generation of a
specific defuzzified object out of the fuzzy wholeness are governed by the former's
membership in the fuzzy wholeness. This is equivalent to the fuzzy logic treatment of
containment of a superset A in a subset BC A which determines the frequency of
appearance of outcomes B in a set of n trials when n— o ( See Kosko, 1992, for details).

o Theory describing the fuzzy wholeness must be continuous judging by a
continuous character of the wholeness itself Here we are in direct agreement with
E.Schroedinger (Schroedinger,1978,45) who wrote ( once again operating within a
framework of metaphysics) that wave mechanics " is a step from a classical point-
mechanics towards continuum- theories " ( underlined in the original ),). Using these
metaphysical assumptions we were able

LiTo arrive at the conclusion that quanta represent a final stage ( detection) of a
defuzzification process (Granik &Caulfield, Refs. 1,2). It is interesting to mention that
some other authors view photons, for example, not as particles but as discrete
perturbations in the electromagnetic field filling the entire Universe ( Jones,1994,70)

2. To provide a more rigorous derivation of the governing equation for the fuzzy
wholeness - the Schroedinger equation (Refs. 1 and 2). :



To judge merits of a metaphysics one has to have some criterion. To this end we
propose what we called metametaphysical criterion: "That metaphysics which posits less
physics and predicts more physics is preferred”. It seems that our metaphysics satisfies
this principle. Definitely this statement can be questioned. However we would like to ask
a reader to accept our metaphysics, and see how it would resolve all problems P = R

IV.RESOLVING P = R PROBLEMS

Our approachto P = R problems based on section III is surprisingly
simple, if somewhat unusual. In view what is said above, one can see that problems
P= R sound paradoxical since they ascribe to the concepts “poor” and “rich” almost
absolute meaning. However in section I we already indicated that these names are
provisional. More correctly, the identification of realities as “poor” and “rich”, and the
latter as being derivative of the former, is wrong. We have switched the labels for what
they ought to be.

Actually, the reality identified in the conventionally posed metaphysical problems
as "rich" 1s in fact a result of the defuzzification ( earlier metaphysics would have called it
the "collapse of the wave function") of the fuzzy wholeness which was earlier called
"poor” reality. This means that the measured (defuzzified) events comprising the body of
the perceptible world are in fact terribly impoverished, dead residue of the rich fuzzy
reality. We have always feel some ironic satisfaction in knowledge that great American . ;
artist J.J. Audubon used to shoot the birds and stuff them so he could be able to paint |
them. This can be viewed as another , rather crude form of defuzzification Thus, in
essence, our metaphysics removes the paradox from P = R problem by simply
identifying correctly what is "rich" reality and what is "poor". What was viewed as
paradoxical P = R implications are in fact cases of mislabeled by prequantum
metaphysicists.

The whole body of evidence ( matter) studied by physics is dead, lifeless,
impoverished remains of a fuzzy reality which is omnipresent ( characterized by extremely
complicated fuzzy density function whose domain of definition is infinite), carries a
boundless energy, and contains possibilities of endless varieties of physical and mental
events. Physicists call this "quantum vacuum", whose good description is given by T.Hey
and P Walters (Hey & Walters, 1989,130),  Instead of a place where nothing happens,
the 'empty’ box should now be regarded as a 'bubbling' soup of virtual particle/antiparticle
pairs”. We have to note that we disagree with a notion of particles at this level, since
they appear only as a result of defuzzification. In our picture we have to say a "bubbling
soup of fuzzy wholeness."

+ If one considers the fuzzy wholeness as an equivalent of quantum vacuum then
how can it be that it is a source of all things, including us? The answer follows from our
metaphysics. Things (what was previously called "rich" reality) are in fact impoverished,
crisp, defuzzified realities. The background from which realities emerge is "no thing."



However it contains a possibility (or potentiality) of creating (generating) things.
Therefore we can say that nothing (that is no-thing) is richer than all things, and definitely
richer than the things that we measure.

One of the ways to describe this is to introduce an idea of a negative membership.
The negative membership is unobservable. However it entails a possibility of generafing
positive membership (realized in the process of defuzzification as the chance of
appearance of a certain physical entity) at the expense of annihilation of this negative
membership. In a sense negative membership in the fuzzy wholeness serves as a
warehouse of possible positive memberships.

V. CASE-BY-CASE P = R RESOLUTION

Having established the primacy (and richness) of fuzzy wholeness ("no thing") we
can successfully resolve all the paradoxes posed at the beginning of our paper.

o Being. By being we usually understand "things" in a broad sense of the word. It
1s tacitly accepted that things are the products of no-things. The paradox lies in semantics.
We have always mislabeled the poorer reality (things) as a richer reality, and vice versa,
the richer reality (no-things) as a poorer reality. Therefore it is enough to invert the
implication and we get it right: No-thing = Thing.

o Life. Life does not arise from a dead matter (as was stated in the original
version of this problem). On the contrary, the " dead " ( or more correctly ,deprived,
impoverished) matter arises from the living ( rich, endowed) no-thing ( fuzzy wholeness)
in a process of a "partial killing", so-to-speak, that is defuzzification.

0 Mind. Mind does not arise from a mindless matter. The possibilities of all
things including mental process are imbedded in the fuzzy wholeness. Therefore part of
the infinite mind that we can ascribe to this wholeness is going to be recreated in living
(and maybe non-living?) things in the process of defuzzification.

o Motion. The world of things, emerging as a result of defuzzification, could
never change at points in space-time as was correctly noticed by Zeno. Zeno's conclusion
that motion is impossible would be unconditionally true, if things (understood in terms of
defuzzified entities) possessed ontological primacy. However because the unobservable
fuzzy reality is in the process of eternal motion its product (the defuzzified things) can
appear at'different space-time points.

- 0 Truth. Ultimate truth is a logical equivalent of the fuzzy wholeness. The latter

can be captured totally by any process of defuzzification, and analogously the former can
be captured by facts which are "defuzzified remains" of the truth. We can say that truth is




not equivalent to a set (even infinite) of facts. Facts arise from truth by defuzzification
with it consequent loss of information.

0 Locality. Until the moment of measurement (defuzzification) reality was fuzzy
and global. Measurements destroy some of the fuzziness, thus reducing the global
membership density function (which was not a delta-function) to a density function that is
delta-function-like. This process establishes the locality of measured events and
simultaneously changing instantly the whole fuzzy reality ( where the restriction on the
signal propagation is not valid any more - it is not measurable for the whole fuzzy reality).
This removes the mystery of the EPR phenomenon.

VI. CONCLUSION

Our brief investigation (across the fuzzy border) of the classical metaphysical
paradoxes allowed us to reduce them to a single problem of P = R transition, which
in turn follows from the ontological interpretation of quantum mechanics where primary-
ontological entity is assumed to be fuzzy wholeness charged with endless possibilities of
creating "things" via the process of defuzzification. Since the explanation of the problems
P = R on that basis seem almost self-evident we argue that our metaphysics is best
suited to satisfy the criterion of meta(metaphysics) requiring the most "economical”
metaphysics underlying physical theory.

Moreover, our discussion left us greatly impressed with philosophers of the
Orient, and particularly with Lao-Tsu who often spoke of the "Tao." This does not mean
that we derive our metaphysics from his philosophy but the coincidence of some
statements is uncanny. If , for example, we would like to use his language then we could
have identified Tao with the fuzzy wholeness, namely R, that is no-thing . In particular, he
wrote "Each something is a celebration of the nothing that supports it." A "lossy"
transition from the fuzzy world to the crisp world is equivalent in a sense to his poetic
words "The Tao which can be spoken is not the true Tao".

One of us (HJC) remembers but can not find the reference for a quotation from a
great German theologian , E Brunner: " I have never believed in the creed of the
church, and I never hope to do so, because I do not wish to commit idolatry". Concluding
our paper we would like to say that although Ezekiel's bones and Audubon's birds will
never live, but the no-thing from which they arose will never cease to thrive. The no-thing
is the ultimate (R) from which all (P) ultimately derives. This observation does not
remove the mystery of existence but it identifies it more properly.
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ABSTRACT

It is shown that quantum mechanics can be regarded as what one could call a “fuzzy”
mechanics, that is, the mechanics whose underlying logic is not an Aristotelian binary logic of
classical mechanics but rather the fuzzy logic. From this point of view, classical mechanics is a
crisp limit of a more general quantum mechanics based on the fuzzy logic. Using such an
approach, the Schroedinger equation is derived from the Hamilton-Jacobi equation.

A deep underlying unity of both equations is connected to the fact that a unique “crisp”
trajectory of a classical particle is “selected ” out of many-continuum paths according to the
principle of least action. This can be interpreted as a conseQuence of an assumption that a
classical particle “resides” in every path of a set of many-continuum paths that collapse to the
single trajectory of an observed classical motion.

The wave function is treated as a quantity describing a deterministic entity possessing a
fuzzy character. As a logical consequence of such an interpretation, the complementarity principle
and wave-particle duality concept can be abandoned in favor of an idea of a fuzzy deterministic
microobject.

Key words: Quantum mechanics, Schroedinger equation, Fuzzy logic, Optical computing.



“...a very strange idea has been introduced - the possibility of a
photon being partly in each of two states of polarization...”

Dirac.(V

INTRODUCTION

One of the purposes of this paper is to bring together several topics: fuzzy logic, quantum
mechanics and quantum computing. In the process, we will extend our prior analysis of a fuzzy
logic interpretation of quantum mechanics® by showing that the Schroedinger equation can be
derived from the assumptions of the fuzziness underlying not only quantum mechanics but also
classical mechanics. A simple way to define fuzziness informally was provided by B Kosko®, who
wrote that the fuzzy principle states that everything is a matter of degree. More nigorously the
fuzziness is defined as multivalence.

Interestingly enough, even separation of classical and quantum domains is somewhat fuzzy
since there 1s no crisp boundary separating them (see, for example,Ref. 4). Moreover, we can even
claim that the difference between these domains is only in a degree of fuzziness which in itself is a
fuzzy concept. In fact, both classical and quantum mechanics make predictions based on
repetitive measurements which implies a certain spread of results. The crisp character of the formal
apparatus of classical mechanics masks this impox‘taht fact by a seemingly absolute character of a
single measurement. From this point of view the ultimate statements of classical mechanics are
nothing more than the results of a certain averaging (defuzzification, meaning elimmnation of a
spread) with a certain weight that could be called the fuzziness density. The difference between
classical and quantum cases is in a degree of fuzziness which can be described formally by some
function representing the fuzziness density. The latter varies from a “sharp” in the classical case to
a “diffuse” in the quantum case.

If we assume that the “thing in itself ” has a fuzzy and deterministic character, then it
represents itself to the outside participants (not necessarily humans) as a random set, thus masking

its deterministic essence. We argue that both classical and quantum mechanics stem from the same




fuzzy roots, and there is no sharp divide bctwéen them. They rather represent the fuzzy ‘fthing n
itself” in its different realizations. This also explains why some phenomena existing in a “‘strongly”
fuzzy domain of quantum mechanics can not be realized in a “weakly” fuzzy domain of classical
mechanics.

- Thus if we accept quantum mechanics as a more general theory than classical mechanics,
then it seems reasonable to expect that the former could be constructed independently from the
latter. However the basic principles of quantum mechanics cannot be formulated even in principle
without invoking some concepts of classical mechanics. Both theories share some basic common
features, namely that they are rooted in the fuzzy reality. As a hindsight we may say that this fully
justifies a belief expressed by H. Goldstein @ that quantum mechanics is a repetition of classical
mechanics suitably understood.

Our basic concept is that reality is fuzzy and nonlocal not only in space but also in time.
In this sense idealized point-like particles of classical mechanics corresponding to the ultimate
“sharpness” of the fuzziness density are non-existent. Any process of interaction (usually called
measurement) between different parts of the fuzzy wholeness is viewed now as a continuous
process of defuzzification. It forces a fuzzy reality into a crisp one. It is clear that the emerging
crisp reality understood as a final step (we call it detection) of measurement carries less
information that the underlying fuzzy reality. This means that there is an irreversible loss of
- information, conventionally identified as a “collapse of the wave function”. Generally speaking, 1t
is not a collapse but rather a “realizatioﬁ” of one of many possibilities existing within fuzzy
reality. Any measurement ( viewed as a process) rearranges this fuzzy reality anew, thus leading
to different detection outcomes according to the changed fuzziness.

Therefore, it seems -quite reasonable to expect that the classical theory cannot escape
bearing some traces of the quantum theory which underlies it. In this light we would like to recall
the words of P. Bridgman who remarked that the seeds and the sources of the ineptness of our

thinking in the microscopic range are already contained in our present thinking applied to the large-




scale region. We should have been capable of discovery of the laws of the former by sufficiently
acute analysis of our ordinary common sense thinking.

As we have already said, both classical and quantum mechanics should be viewed as
statistical theories (cf. Ref. 6) with respect to an ensemble of repetitive experiments where each
experiment must be carried out under identical conditions. The latter is a very restrictive statement
stemming from the crisp-logical world view, and therefore not realizable even in a more general
theoretical setting of the fuzzy reality. If we assume a fuzzy nature of “things” then statistical
character of physical phenomena would follow not from their intrinsic randomness but from their
fuzzy-deterministic nature which in turn expresses itself as randomness. Clearly, this definition of
the statistical nature of both classical and quantum mechanics is applicable even to experiments
with one particle.

Let us elaborate on this. Conventionally, a statistical theory is tied to “randomness”.
However, recent results in the theory of fuzzy logic have provided a deterministic definition for the
relative-frequency count of identical outcomes (the probability of the outcome in the language of
probability theorists) by expressing them as a measure of subsethood S (A B), that is a degree to
which set A is a subset of B . To make it clear, suppose B contains N trials, and A contains Na
successful trials. Then S(A,B) = N4/N. We would like to extend this concept to experimental
outcomes of measurements performed on a classical particle. This would be possible if we would
consider the classical particle as being simultaneously in all possible paths connecting two spatial
points. In a nutshell, this approach coincides with the idea (expressed in different words)
underlying the principle of least action.

- To adapt the concept of fuzziness to a spatial localization of a particle, we introduce the
notion of a membership in the spatial interval (1-, 2- or 3-D) which, generally speaking, would
vary from one interval to another. The membership can be defined as follows. Let us say that we
perform N experiments aimed at detecting a particle in a certain interval and find the particle in
this interval N, times. The membership of the particle in the interval is then defined as Na/N.

Formally the membership can be described with the help of the sigma function of Zadeh ® Intun,




this approach allows us to formally introduce the membership density, defined as the derivative of
the membership function. If we denote the membership density by p, then a degree of membership
of a particle in an elemental volume AV is pAV. According to this definition, the particle has a
zero membership in a space interval of measure 0, that is, at a point. Such an apparently
paradoxical conclusion indicates that in general we should base our estimation of fuzziness on the

relative degree of membership instead of the absolute degree of membership.

In other words, given a degree of membership p(xj) dV of a particle in a volume dV
containing X; and a degree of membership p(x) dV of this particle in a volume dV containing x;
we find relative degree of membership of the particle in both volumes: p(xj)/p(x;). This expression

represents also the relative degree of membership of the particle in the two pomnts xj and x;j,

despite of the fact that its absolute degree of membership in these points 1s 0.

The importance of the relative degree of membership is due to the fact that experimentally

the location of the particle is evaluated on the basis of its detection at a certain location in Nj

experimental trials out of their total number N. As was shown by Kosko'”, the ratio Nj /N

measures the degree to which a sample space of all elementary outcomes of experiments is a subset
of a space of the successful outcomes, or in other words, a degree of membership of the sample
space in the space of the successful outcomes. Therefore, in our case, the relative degree of
membership p(x;)/u(xj) can be identified as the relative count of the successful outcomes (in a
series of measurements) of finding the particle at points xj and Xj.

In view of these definitions, the classical mechanical sigma curve of membership in a
spatial interval is nothing more than a step-function. This simply means that up to a certain spatial
point x, the degree of membership of a particle in an interval from say -0 to x is zero, and for any
point y>x the degree of membership in any interval (-0, y] is 1. The corresponding membérship
density is the delta-function. Thus the idealized picture of mechanical phenomena (particles
occupying intervals of measure zero) indicates that they are strictly non- fuzzy, and are governed

by a bivalent logic.




In reality, any physical “particle” occupies a small but nonzero spatial interval. This
means that the membership density is a sharp function to a minimum fuzziness (as compared to
the absolute minimum represented by the delta-function corresponding to a point-like particle).

On the other hand, in the microworld the fuzziness is maximal. In fact, if we accept the
idea that a quantum-mechanical “particle” (which we will call a microobject) “resides” in different
elemental volumes dV of a three-dimensional space with the varying degrees of residence
(membership), then we can apply to such a microobject our concept of the membership density. In
general, this density cannot be made arbitrarily narrow as is the case for a classical particle. The A
latter can be considered as the limiting case of the former when the membership density becomes
delta-function-like. Moreover, the fuzziness in the microworld is even more subtle since
mathematically it is described with the help of the complex-valued functioni This results in the
emergence of the interference phenomenon for microobjects, which in the classical domain is an
exclusive property of the waves and not particles. Therefore, mutually exclusive concepts of
particles and waves in classical mechanics become inapplicable in the realm of fuzzy reality where
“particles” and “waves” are not mutually exclusive concepts, but rather various expressions of
fuzziness.

For example, the double slit experiment can be interpreted now as a microobject’s
“interference with itself” since it has a simultaneous membership in all the space including
elemental volumes containing both slits. Since the total membership of a microobject in a given
finite volume is fixed, any change in membership in one of the slits affects another thus leading to
the interference effect. In the following, we “recover” the fuzziness of the quantum world by
deriving the Schroedinger equation from the Hamilton-Jacobi equation, where the latter can be

viewed as the result of the collapsed fuzziness of the quantum world.

DERIVATION OF THE SCHROEDINGER EQUATION

First, we show how the Hamilton-Jacobi equation for a classical particle in a conservative

field can be derived from the second law of Newton, thus connecting it to the destroyed fuzziness.




A particle’s motion between two fixed points, A and B, can in prnciple occur along any
conceivable path (a “fuzzy” ensemble in a sense that a particle has membership in each of them)
connecting these two points. In the observable reality, these paths “collapse” onto one observable
path. Mathematically, this reduction is achieved by imposing a certain restriction on a certain
global quantity (the action S), defined on the above family of paths.

To see that more clearly, let us consider the second law of Newton, and assume that there
are many trajectories comprising a continuous set. This means in particular that the classical
velocity is now a function of both the time and space coordinates V = V(T,t). Under this
assumption we fix time t=T. Then (since the correspondence T to t is many to many) T is not
fixed as was the case for a single trajectory, and the velocity would vary with T . This is equivalent
to considering points on different trajectories at the same time.

Our assumption means that the time derivative is now

i:g+\70V. (1)
dt ot '

Hawing this in mind, we apply the cur! operation to the second law of Newton for a single particle.

Performing elementary vector operations we obtain

0 - 1 - -
—curl p ——curl x curl =0
7 P~ o (p P) @

where p=m¥V is the particle’s momentum. If we view (2) as the equations with respect to curl P,
then one of its solutions is

p=VS 3)
whére S(T ,t) is some scalar function to be found.

Note that the spatial and time vanables enter into S on equal footing. Therefore we can

argue that S can serve as a function incorporating the notion of fuzziness (here a continuum of

possible paths). Upon substitution of (2) back in the second law of Newton, dp/dt =- VV

where d/dt 1s understood in the above sense,




V [8S/ét+ (1/2m)( VS)? +V]=0

Integrating this equation and incorporating the constant of integration (which generally
speakifig is some function of time) into the function S, we arrive at the determining equation for the
function S which is the familiar Hamilton-Jacobi equation for a classical particle in a potential

field.
[6S/et + (1/2m)( VS): +V]=0 )

By using Eq. (1) and (3) we can represent S as a functional defined on the continuum of

paths connecting two given points, “0” and “1”, corresponding to the moments of time, t; and t;.

To this end we rewrite (4).
8S/6t = p*/2m - V )
Integrating (5) we obtain the explicit expression of S in the form of the following functional

Yy,
_{.p
S= ;" G-V (6)

WhiCh 1s the well-known a priori definition of the action for a particle moving in the potential field
V. Thus we have connected the concept of fuzziness in classical mechanics with the action S. If
we consider S as a measure of fuzziness in accordance with our previous discussion then by
minimizing this functional (that is by postulating the principle of least action), we “eliminate” (or
rather minimize) fuzziness by generating the unique trajectory of a classical particle. In a certain

sense the principle of least action serves as a defuzzification procedure.




Now we proceed with the derivation of the Schroedinger equation. There are two basic
experimental facts which make microobjects so different from classical particles. First, all the
microscale phenomena are linear. Second, (which is corollary of the first) these phenomena obey
the superposition principle. Here it is necessary to recall that already at the initial stages of
development of quantum mechanics, Dirac formulated its fuzzy character, albeit without using the
modern-day terminology. He wrote “... whenever the system is definitely in one state we can

»(  This is as close as one can come

consider 1t as being partly in each of two or more other states
to the concepts of fuzzy sets and subsethood » without directly formulating them. In view of
these concepts 1t does not seem strange that a microobject sometimes can exhibit wave properties.
On the contrary, they arise quite naturally as soon as we accept the fuzzy basis (meaning “being
partly in ... other states™) of microscale phenomena which implies among other things the above-
mentioned “self-interference.”

How can we derive the equation that would incorporate these essential features of
microscale phenomena and, under certain conditions, would yield the Hamilton-Jacobi equation of
classical mechanics? We depart from the Hamilton-Jacobi equation (but not from the second law
of Newton) because of its connection to the hidden fuzziness in classical mechanics. We consider

the simplest classical object which would allow us to get the desired results that is to account for

the two experimental fact mentioned earlier. Quite naturally, we choose a free particle which

‘implies setting V =0 in Equation 4. Our problem is somewhat simplified now. We are looking for

a linear equation whose wave-like solution is simultaneously a solution of the Hamilton-Jacobi
equation. Since the mechanical phenomena behave differently at micro— and macroscales the linear
equation should contain a scale factor ( that is to be scale-dependent), such that in the limiting case
corresponding to the macrosbopical value of this factor, we get the nonlinear Hamilton-Jacobi
equation for a free particle.

A nonlinear equation admits a wave-like solution (for a complex wave) if this equation is

homogeneous of order two. Since equation (4) does not satisfy this criterion, we cannot expect to
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find a wave solution for the function S. However this turns out to be a blessing in disguise,
because by employing a new variable in place of the action S, we can:

a) convert this equation into a homogeneous (of order two) equation (thus allowing for a wave-like
solution) and

b) simultaneously introduce the scaling factor. It is easy to show that there is one and only one

transformation of variables which would satisfy conditions a) and b):
S =KIn¥ )

where the scaling factor K is to be found later.
Upon substitution of (7) in (4), we obtain the following homogeneous equation of order

two with respect to the new function ¥

N K?
KY ~——+——(V¥)2 =0 8
X 2In( ) (3)

Equation (8) is easily solved by the separation of variables, yielding
2m_ .
at- 1’——ao T
V= -] ©)

where vector a of length a is another constant of integration. Since solution (9) must be a
complex wave, the argument of ‘¥ must satisfy two conditions: a) it must be imaginary, and b) the
factors at the variables t and T must be the frequency @ = 2mv and the wave vector k

respectively. This results in he following:

K =-iB (10)

a/B=w, v2m/a a/B=k (11)
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where B 1s a real-valued constant. Now the solution (9) is
¥ =Cexp|-i(ot- k.T] (12)

Since both functions S and ‘Y are related by Eq. (7), we can easily establish the connection
between the kinematics parameters of the particle and the respective parameters o and f( which
determine the wave-like solution of the Hamilton-Jacobi equation for the new variable ‘Y.
According to classical mechanics, —0S/ 0t is the particle energy Eg and VS 1s the particle
momentum p . On the other hand, these quantities can be expressed in terms of the new variable ¥
with the help of Eqgs. (7) and (12), yielding the following:

E,=Bo, Bk =75

From these relations we see that for a free particle its energy (momentum) is proportional
to the frequency (wave vector) of the wave solution to the “scale-sensitive” modification of the
Hamilton-Jacobi equation. The constant B is found by invoking the experimental fact that Eg =
hv =A o (where h is the Planck constant). This implies B = % or K = —-i#, and as a byproduct,
the de Broglie equation p = Rk . Inserting solution (12) in original nonlinear equation (8), we

arrive at the dispersion relation

o= ;r—n—kz (13)

Now we can find the linear wave equation whose solution and dispersion relation are given

by Eqs (12) and (13) respectively. Using an elementary vector identity,we rewrite Eq. (8)

VZ]LP_ ih

0 in . A —
ol S [AV(F V) - 29V =0 (14)

[
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Equation (14) is the sum of the two parts, one linear in ¥, and the other non-linear. The solution
(12) converts the non-linear part into identical zero. On the other hand, this solution together with
the dispersion relation (13) satisfies the linear part.. Therefore we have proven the following:

If the wave-like solution (12) satisfies Equation (8), then it is necessary and sufficient that it must

be a solution of the following linear partial differential equation, the Schroedinger equation

[ih§+% Vi¥=0 (15)

Now we return back to the variable S according to ‘¥ = exp(iS/# ) and introduce the following
dimensionless quantities: time t = t/t,, spatial coordinates R=r/L,, the parameter h = h/S ,
which we call the Schroedinger number, and the dimensionless action S = S/S,. Here S, =
mL,/t,, L, is the characteristic length, and t, is the characteristic time. As a result we transform

(15) into the following dimensionless equation

oS/ot + —;—(VS Y =(ih/2) VS , (16)

This equation 1s reduced to the Hamilton-Jacobi equation of the classical mechanics (or,
equivalently the equation corresponding to the minimum fuzziness, as we discussed earlier) if its
right hand side goes to 0. This possible only when the Schroedinger number h goes to zero.
Therefore, at least for a free particle, this number serves as a measure of fuzziness of a
microobject. Since fiis a fixed number the limit h —0 is possible only if S,—> 00, thus
confirming our earlier assumption that action S represents a measure of fuzziness of a microobject.
For a free particle, this means that with the decrease of So fuzziness of the particle increases.

Interestingly enough, the question of fuzziness (although not in these terms) was addressed
in one of the first six papers on quantum mechanics written by E. Schroedinger"®. He wrote

“..the true laws of quantum mechanics do not consist of definite rules for the single path, but in
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these laws the elements of the whole manifold of paths of a system are bound together by
equations, so that apparently a certain reciprocal action exists between the different paths™.

It has turned out that using the same reasoning as for a free particle we can easily derive
the Schroedinger equation from the Hamilton-Jacobi equation for the case of a piecewise - constant
potential as, for example, in the case of a square potential well. By replacing in the resulting
Schroedinger equation the function ¥ by S according to (7), and introducing the dimensionless

vanables used in a study of a free particle, we obtain

. 1
—S+—(VS) +U =(ih2) VS 17
P 2( ) (ih/2) (17)

where U = U/S, 1s the dimensionless potential. Once again the Schroedinger number serves as the
sole indicator of the respective fuzziness, yielding the classical motion for h— 0.

A more complicated case of a variable potential U(T,t) cannot be derived fr‘om the
Hamuilton-Jacobi equation with the help of the technique used so far, since there are no
monochromatic complex wave solutions common for the non-linear Hamilton-Jacobi equation and
the linear Schroedinger equation. Therefore, we postulate that the Schroedinger equation
describing a case of an arbitrary potential U(T ,t), should have the same form as for a potential
which is piece-wise constant. This postulate is justified by the fact that apart from the
experimental -confirmations in the limiting case of a very small Schroedinger number, h—0
(minimum fuzziness) we recover the appropriate classical Hamilton-Jacobi equation. In what
follows we will describe this process of recovering classical mechanics from quantum mechanics
(which we dubbed defuzzification) in a different fashion that will require a study of a physical
meaiﬁng of the function V.

FUZZINESS AND THE WAVE FUNCTION ¥

Earlier, by considering the Schroedinger number h, we saw that the action S represents
some measure of fuzziness. Therefore, it is reasonable to expect that the function ¥ = exp(iS/ k)
is also related to the measure of fuzziness. Since the fuzziness is measured by real-valued

quantities (degree of membership, membership density), a possible candidate for such a measure
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would be some function of various combinations of ¥ and W*. There is an infinite number of
such combinations. However it is easy to demonstrate ‘" that the Schroedinger equation is
equivalent to the two nonlinear coupled equations with respect to the two real-valued functions
constructed out of W\W* and (£ /21)Lo(\W/¥*). Therefore, our choice of all possible real-valued
combinations was reduced to only two functions. However, in the limiting transition to the
classical case, only (% /21)Ln(W/\¥*) is related to the classical velocity. As a result, we are left
with only one choice, namely ‘V'W*.

An appropriate way to see the physical meaning of ‘W\W* is to consider some not very
involved specific example which can be easily reduced to a respective classical picture. We
consider a solution of the Schroedinger equation for a free particle passing through a Gaussian
slit?

L2
NI SIS RE R
im(vg T+70) () (x=voD)

¥ = f m 1 e +
2mih inTt P 2h im 1 1 1
T+t+ FCE s
mb? BT t b

(18)

where T 1s the mitial moment of time, t is any subsequent moment of time, b is the half-width of the

slit, vo = xo/T, and X is the coordinate of the center of the slit.

Using (18) we immediately find that WY¥* is

YW= (1/2phb?)[ 1 + /T + h* | exp[ - S/ (1 + /T + h? ] (19)

where now S = (x- tvo)/b2. Executing the transition to the case of a classical particle passing
through an infinitesimally narrow slit we set both h— 0 and b — 0. As a result, (19) will become
the delta-function. Recalling that we define a classical mechanical particle as a fuzzy entity with a
delta-like membership density, we arrive at the conclusion that the real-valued quantity WV\V* can
be identified as the membership density for a microobject.

This allows one to ascribe to W\P*dV the physical meaning of the degree of membership of

a microobject in an infinitesimal volume dV (cf. to the analogous statement postulated in Ref.7).
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This in turn implies a nice geometrical interpretation with the help of a generalization of Kosko’s
multidimensional cube. Any fuzzy set A (in our case a fuzzy state) is represented (see Fig.1 for a
2-D cube) by p.A inside this cube. Following Kosko, we use the sum of the projections of vector A
onto the sides of the cube as the cardinality measure.

" Let us consider the following integral

j PYHdV = Lim(i WP dV,) (20)
—o Now

i=1

If this integral 1s bounded, then we can normalize it. As a result, we can treat the right hand side

of (20) as the sum of the projections of the “vector” J PYWY*dV onto the sides W,'¥;* AV, of the

infinitely-dimensional parallelepiped. This allows us to represent the integral as the vertex A along
the major diagonal of this parallelepiped.. According to the subsethood theorem ®, each side of the
parallelepiped represents the degree of membership of the microobject (viewed as a deterministic
fuzzy entity) in any given elemental volume dV; built around a given spatial point xj. According to
the fuzzy theory the relative membership in two different spatial points xj and x;j, that is
YV *MY*, 1s equal to the ratio of the respective numbers of the successful outcomes in a series
of experiments aimed at locating the microobject (or rather its part) at the respective elemental
* volumes. Hence we can conclude that the membership density at a certain point is proportional to
the number of successful outcomes in repeated experiments aimed at locating the fuzzy microobject
at the respective elemental volumes.

If the integral on the right-hand side of (20) is divergent, this does not change our
arguments, since (P'V*) is a rﬁeasure of the successful outcomes in a series of experiments that do
not depend on the convergence of the integral. Thus we see that the fuzziness, via its membership
density, dictates the number of successful outcomes in experiments aimed at locating the fuzzy
microobject. Continuing this line of thought we see that any physical quantity associated with the

fuzzy microobject is not tied to a certain spatial point. This indicates a need to introduce a process
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of defuzzification with the help of the membership density which would serve as the “weight”
this process. Such defuzzification is different from what is usually understood by this term, that is

a process of “driving” a fuzzy point to a nearest vertex of a hypercube. Instead, we take the degree
of membership (P¥*);AV; at each vertex of the infinite-dimensional parallelepiped and multiply it

by the value of the physical quantity at the respective point xj. Summing over all these products
results in the averaged (defuzzified) value of the quantity.

Thus, instead of averaging over the distribution of random quantities, we introduce the
defuzzification of deterministic quantities. Mathematically both processes are identical, but
physically they are absolutely different. We do not need the probabilistic interpretation of the wave
function ‘¥, which implies that there is another, more detailed level of description that would allow
us to get rid of uncertainties introduced by randomness. Now it is clear that within the framework

of the fuzzy interpretation, we cannot get rid of the uncertainties intrinsic to fuzziness and not

connected to randomness. From this point of view quantum mechanics does not need any hidden
variable to improve its predictions. They are precise within the framework of the fuzzy theory.

Moreover, since quantum mechanics is a linear theory, one can speculate that according to
fuzzy approximation theorem””, the linearity and fuzziness of quantum mechanics are the best
tools to approximate (with any degree of accuracy) any macrosystem (linear or nonlinear). The
linearity of quantum mechanics is responsible for the uncertainty relations which are present in any
linear system. Therefore, (as was demonstrated long ago(s) ) these relations enter quantum
mechanics even before any concept of measurement.

Let us consider the membership density of a free microobject (a progenitor of a classical
free-particle). It is obvious that W"¥*=const. This means that the relative degree of membership
for any two points in space is 1. In other words the free microobject is “everywhere”, which is the
same property as say, a 3-D standing wave has. This example shows that the wave-particle
duality is not a duality at all, but simply an expression of the fuzzy nature of things quantum. In
fact, we can even go so far as to claim that the complementarity principle is a product of a

compromise between the requirements of the bivalent logic and the results of quantum experiments.
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Within the framework of the fuzzy approach there is no need to require complementarity, since the
logic of a fuzzy microobject transcends the description of its properties in terms of either-or, and as
a result is much more complete, probably the most complete description under the given
experimental results.

" It has turned out that the membership density has something more to offer than simply a
degree to which a fuzzy microobject has a membership in a certain elemental volume dV. In fact,
using expansion of the wave amplitude (we could call it fuzziness amplitude) ¥ in its orthonormal
eigenfunctions ‘¥, - and assuming that the integral in (20) is bounded, we write the well-known

expression

[ worav=3 aar=1 @y

k=1

Equation (21) allows a very simple geometric interpretation with the help of a (N-1) -
dimensional simplex. A fuzzy state ¥ is represented as a point A on the boundary of this simplex
(Fig. 2 shows this for a 1-D simplex, k=1,2). Its projections onto the respective axes corresponds
to the values a,a;*. Now applying the subsethood theorem, we interpret the values of aa* as the
degree to which the state A is contained in a particular eigenstate k. Using Fig. 2 we can clearly
see that A » B = B, A n C = C. Moreover, the same figure shows us that the lengths of
projections of A onto the respective axes (namely,OA and OC) are nothing more than the
cardinality sizes M(AMB)= a;a,* and M(ANC) = a,a;* . On the other hand, the cardinality size of
A is_ M(A) = 1. Therefore the respective subsethood measures are S (A,B)= a;a,*/1 and S(A,C) =
aa,*/1. At the same time, both of these measures provide a number of successful outcomes, that
is, detections of the respective states k=1 or k=2 in the repeated experiments.

The picture which we discussed corresponds to a particular case when a state A has a

wave (fuzziness) amplitude ¥ which corresponds to the pure state. At the same time, it is general
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enough to describe a mixed state characterized by what is called in the probability interpretation

the density matrix r(x’,x) The integral of r(x’,x) over all x’s yields the following sum:
S a
k=1

which is the generalization of a measure of containment of the fuzzy state A in the discrete states
k. By preparing a certain state, which is now understood to be a fuzzy entity, we fix the
frequencies of the experimental realizations of this fuzzy state in its substates k. If the fuzzy state
A undergoes a continuous change, which corresponds in Fig. 2 to motion of p. A along the
straight line, then its subsethood in any state k also changes. This implies the following: if the '
eigenfunctions of a fuzzy set stay the same, the degree to which the respective eigenstates represent
the fuzzy state varies. This variation can occur continuously despite of the fact that the eigenstates
are discrete.

This indicates an interesting possibility that quantum mechanics is not necessarily tied to

4% and quite

the Hilbert space. Such a possibility was mentioned long ago by J. von Neumann
recently was addressed by C. Wulfman."”. One of the hypothetical applications of this idea is to
use quantum systems as an infinite continuum state machine in a fashion which is typical for a
fuzzy system : small continuous changes in the input from some ugly nonlinear system will result
in small changes at the output of the quantum system which in turn can be correlated with the input
to produce the desired result.

Concluding our introduction to a connection of fuzziness and quantum mechanics we
prove a statement which can be viewed as the generalized Ehrenfest theorem. We will demonstrate
that defuzzification of the Schroedinger equation, with the help of the membership density ‘V'V*,
wili yield the Hamilton-Jacobi equation. This will provide a posteriori derivation of the

Schroedinger equation for an arbitrary potential U(T ,t). We assume that the fuzzy amplitude

Y — 0 as r—> o0, and rewrite the Schroedinger equation as follows

(R 1) %Lu‘l’ +(h?2m) (VLn¥)’ +V (22)
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Integrating (22) with the weight ¥\V* (that is “defuzzifying” it), we obtain

j W[ (R 1) %Ln‘{’+(h2/2m)(VLn‘I’)2+V] dx=0 (23)

Integrating the second term by parts and taking into account that the resulting surface

integral vanishes because ¥ — 0 at infinity, we obtain the following equation
< @S/or> + (12m)<( VSY VS*)>+<V>=0

where < > denote defuzzification with the weight W'WP*, and S =(%/i))Ln'¥. This equation is
analogous to the classical Hamilton-Jacobi equation (4).

The generalized Ehrenfest theorem shows that the classical description is true oniy on a
coarse scale generated by the process of “defuzzification”, or measurement. The “classical
measurement” corresponds to the introduction of a non-quantum concept of the potential U(T ,t)
serving as a short-hand for the description of a process of interaction a microobject (truly quantum
object) with a multitude of other microobjects. This process destroys a pure fuzzy state (a constant
fuzziness density) of a free quantum “particle”. }

Paraphrasing A. Peres '®, we can say that a classical description is the result of our
“sloppiness”, which destroys the fuzzy character of the underlying quantum mechanical
phenomena. This means that, in contradistinction to Peres, we consider them “fuzzy” in a sense
that the respective membership distribution in quantum mechanics does not have a very sharp peak
characteristic for a classical mechanical phenomena. Note that we exclude from our consideration
the problem of the classical chaos, assuming that our repeated experiments are carried out under
the absolutely identical conditions.

In a final part of our paper we consider a possible use of quantum fuzziness in optical
computing.

OPTICAL COMPUTING
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Essentially all universal computing machines are based on the Turing paradigm, that is on
the following:

e input data

e input instructions (according to some program based on some already known

algorithm)

_ e availability of one or more physical devices necessary to perform each step

Note that the Turing paradigm presupposes the knowledge of an algorithm, and as such cannot be
used for serendipity problems.

This paradigm is so simple and so deeply embedded in our thinking that alternatives
appear almost inconceivable. However one of the authors (J.C.), has described computers (Refs.,
17-25) which avoid the third step in the Turing paradigm. That step could be very costly from the
point of view of resources consumption. If a physical device ( in this case a gate) 1s dissipative
(irreversible) then the third step is costly in energy terms because of the dissipation of energy. On
the other hand if there was a possibility to make a lossless gate, the accumulation and processing of
unnecessary information (“garbage”) during intermediate calculations could eventually lead to an
unreasonable high expenditure of time. Here we can consider time as one of the resources that we

prefer to spent efficiently. This compels us to look at the “garbage” closer.

Garbage is information generated by computers en route to solving problems, which by

100

itself; is of no value as soon as we get the answer. If for example we have to calculateZi , then
i=t

one of the ways to solve the problem is to do the following

1+42=3
el

3+3=6

6+4=10

4950 +100 = 5050

where numbers 3,6, 10, ..., 4950 can be considered as garbage.
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A non-dissipative garbage collection can be identified as one of the major problems in
utilizing the potential advantages of non-dissipative logic gates, even if it will be possible to build
them. And yet the time spent in collecting the garbage could present a formidable problem. On the
other hand, dissipative computer logic gates, if used in the process of “ garbage collection”,
destroy information and, as a result, increase entropy. The respective entropy Increase
accompanying a destruction of one bit of information is

AS>kLn 2

and the respective quantity of energy expended in this process 1is

AE=TAS >kTLn 2
where k is the Boltzmann constant. Information-conserving, reversible (non-dissipative) logic gates
are possible principle®. This means that AS = 0, and respectively AE = 0. However, n
practice all such gates to date exhibit AE > kTLn2.

However if we look at quantum mechanics, the entropy increase occurs only when
defuzzification (detection) occurs. If it would be possible to avoid defuzzification of the garbage
bits then it would mean a lossless (unitary) propagation of a wave function. This provides an
obvious advantage of such a computer as compared with a computer built on the basis of
dissipative gates. Moreover, it was shown previously ( Refs. 17-25), that it is often possible even
to avoid “premature” measurements in analog or digital quantum computers. The defuzzification
* which could be made, but did not, would have resulted in garbage. This means that some garbage
can be totally avoided, thus providing another advantage of a quantum computer even compared to
a Turing machine built with lossless gates. Which leads us to the following question: how much
garbage can be avoided?

The answer to this-question is to some extent surprising. Before proceeding with the
answer we want to address the related problem. How much garbage can we create with physical
systems? The answer is a finite amount. The upper limit of this amount can be easily evaluated by

using very simple arguments. Suppose that we have a certain mass m which we want to use to a

maximum possible degree in a computer. The maximum available energy in this case is given by
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the rest energy mc’>.  Further suppose that we operate in an ideal environment at zero temperature,
T = 0, during a time interval At . The maximum energy resolution is given by the uncertainty
principle
AE At 2 h/2
This feans that the maximum number of distinguishable states which can be obtained in the
processes of defuzzification is
Nmax = E/At = 2mc’ At/

If we would have installed N intermediate gates to detect all these states then the number of
garbage bits could not exceed Nmax . Let us. consider a concrete example by taking some absurd
values:

m = | Earth mass

At = 10° years
The resulting number of garbage bits is an astronomical number Nmax ~10% and not less
astronomical amount of time spent in detecting the garbage bits. However, amazingly enough, we
can easily avoid more garbage than generated by this hypothetical computer. Let us consider 50
plates separated from each other by a distance 2f, where f is the focal distance of lenses inserted
between these plates. Each plate has 50 holes. We look for the brightness at some point in the 51-
st plate. This would require (if we assume that a photon has a membership in all the path
connecting all the holes) about 50°° ~ 10* calculations. It seems that it is impossible to find the
brightness via the Turing paradigm within the reasonable time even if we use the lossless gates.
However, the answer is found experimentally by performing crude quantum calculations, and 1t is
_ produced in an amazingly short time: a few nanoseconds.

How can this be? The answer is very straightforward, we never defuzzify the garbage
information on all 50°° paths, that is the defuzzification process before its final phase, detection,
was never detected (recorded), nor interfered in any way thus avoiding additional generation of N

bits of “expendable” information. In this sense this computing device is garbage-free.
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In some quantum computers there is no limit to the avoidable garbage, and avoided
garbage need not to be cleaned. This means that there 1s no upper limit to the effective speed of
quantum computers measured relative to conventional Turing-equivalent computers in which the
garbage is generated by default via use some sort of gates (dissipative or non-dissipative).

~ What happens can be explained in fuzzy terms. Before measurement (defuzzification) of
the final result, the optical activity had an actual, fuzzy presence in all the paths. The
defuzzification of the final result looses all that garbage information but retains only the required
results. In terms of a wavefunction we can say that ¥ is prepared in such a way that | Y |2
provides the desired result, and the undetectable quantum phase corresponds to the connection to

globality of all the paths. The phase and its global information are lost when we get the “final”
product of defuzzification, that is,

¥ !? Since we are interested only in this product, the lost

information ( which contributed to the generation of the product) can be viewed as “garbage”. It
seems that such an explanation is more congenial than the one in which the garbage avoided in this
universe is accumulated in all parallel untverses.

CONCLUSION

This work represents a continuation of our previous published (Ref. 2) effort to understand
quantum mechanics in terms of the fuzzy logic paradigm. We regard reality as intrinsically fuzzy.
In spatial terms, this is often called nonlocality. Reality is nonlocal temporarily as well, which
means that any microobject has membership(albeit to a different degree) in both the future and the
past. In this sense one might define present as the time average over the membership density.

Measurement is defined as a continuous process of defuzzification whose final stage
detection is inevitably accompanied by a dramatic loss of information through emergence of
locality, or crispness in fuzzy logic terms.

We attempted to provide a description of quantum mechanics in terms of deterministic
fuzziness. It is understood that this attempt is inevitably incomplete and has many features which

can be improved, extended, or corrected. However we hope that this work will inspire other people
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to start looking at the quantum phenomena through “fuzzy” eyes and maybe something practical

(apart from removing wave-particle duality and complementary mysteries) will come out of this.
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FIG.2



FIGURE CAPTIONS
Fig.1 Geometrical interpretation of fuzzy sets.The fuzzy subset A is a point in the unit 2-cube
with coordinates a and b.The cube consists of all possible fuzzy subsets of two elements x, and x,.

Fig.2  Representation of a quantum mechanical state A as a point in a l-dimensional fuzzy

simplex.



